FINIAL REPORT

CLEANING EVALUATION FOR THE FLUSHABLE RONGEURS

PROTOCOL NO. 200700209 REV 01

LABORATORY NO. 358861

PREPARED FOR:

AMERICAN MEDICAL PRODUCTS, INC. (AMP, INC.)

Distributed By

ELMED

www.ELMED.com

35 N. Brandon Drive
Glendale Heights, IL 60139
(224) 353-6446

SUBMITTED BY:

NELSON LABORATORIES, INC.
6280 SOUTH REDWOOD ROAD
SALT LAKE CITY, UT 84123-6600
801-963-2600
Cleansing Evaluation For The Flushable Rongeurs

Laboratory Number: 358861
Protocol Number: 200700209 REV 01
Sample Source: American Medical Products, Inc. (AMP, Inc.)
Sample Identification: Flushable Rongeurs
P.O. #010407

Number of Test Samples: 4
Deviations: None
Protocol Approval Date: 18 Jan 2007
Sample Received Date: 09 Jan 2007
Lab Phase Start Date: 22 Jan 2007
Lab Phase Completion Date: 24 Jan 2007
Report Issue Date: 25 Jan 2007

Introduction:

This report describes the evaluation of the recommended cleaning procedures for the Flushable Rongeurs from American Medical Products, Inc. (AMP, Inc.). The devices were contaminated with defibrinated blood soil (DBLSO) containing Geobacillus stearothermophilus, ATCC #7953. Bioburden extractions were performed to determine the number of viable organisms present on one positive control device. Three test devices were cleaned and additional bioburden assays were performed to determine the bioload reduction of each device.

Procedures:

Culture Preparation: The test soil was inoculated with the test organism from a stock spore suspension maintained at 2-8°C to yield a minimum population of 10^2 CFU/mL. A standard plate count was performed on the inoculated test soil to determine the initial titer of the test organism.

Sample Contamination: Approximately 2 inches of the distal ends of the devices were immersed in the inoculated test soil. The remaining test soil was placed into a clean spray bottle, and the rest of the devices were sprayed with the test soil to achieve even coverage. The devices were simulated by opening and closing the jaws 10 times for each device. The devices were then allowed to remain in contact with the test soil for 15 minutes with the jaws open. The soiled devices were then placed into a clean pan, and the pan was covered with a towel dampened with purified water (PURW) and allowed to set for 30 minutes to simulate the wait time between contamination and cleaning.

Positive Control Recovery: The positive control device was tested using the bioburden method described below.
Cleaning Procedure: The enzymatic detergent, Enzo®, was prepared following the manufacturer’s recommendations using lukewarm tap water. Each device was fully immersed in the prepared detergent and allowed to soak for a minimum of 5 minutes with the jaws open. Each device was thoroughly cleaned with a soft bristle brush until all visible soil had been removed, paying particular attention to crevices and other difficult-to-clean areas of the device. Using the flush cannula supplied by the sponsor and ensuring that the cannula fit tightly into the flush port before flushing, the flush port on each device was flushed three times. Following cleaning, the devices were rinsed in lukewarm tap water for a minimum of one minute. The flush cannula was used to aid in rinsing each device three times each.

The enzymatic detergent, Enzo®, was prepared following the manufacturer’s recommendations using lukewarm tap water in an ultrasonic cleaning unit. The flush cannula and each device (with the jaws open) were fully immersed in the prepared detergent and allowed to sonicate for a minimum of 10 minutes. Following sonication, the devices were rinsed in lukewarm tap water for a minimum of one minute. The sonicated flush cannula was used to aid in rinsing the devices. The devices were dried using a clean soft cloth. Pressurized air was also used to aid in drying, specifically the flush port of the device.

Bioburden Testing: The positive control and cleaned devices were tested for bioburden by immersing in peptone Tween® and shaking manually 100 times to extract the organisms present. Aliquots of the extract fluid were diluted where appropriate, and plated onto soybean casein digest agar (SCDA) or filtered through a 0.45 μm membrane and the membrane was placed onto SCDA. Plates were incubated at 55-60°C for 24 ± 3 hours and colonies were enumerated.

Calculations: The percent reduction after cleaning was calculated using the following formula:

\[\text{% reduction} = 100 - \left(\frac{\text{final population}}{\text{initial population}} \times 100 \right) \]

The log reduction after cleaning was calculated using the following formula:

\[\text{log reduction} = \log \text{ initial population} - \log \text{ final population} \]

Initial population = Positive control titer
Final population = Recovered counts of each device

RESULTS:

The results of the cleaning evaluation are summarized in Table 1. Each device was individually inoculated, and some variability is expected between devices. The DBLSO titer and the positive
The cleaned devices were free of visible soil.

STATEMENT OF UNCERTAINTY:

If applicable, the statement of uncertainty is available to sponsors upon request.

Nick Workman
Technical Reviewer

Julee M. Barrett, B.S.
Study Director

30 Jan 2007
Study Completion Date
TABLE 1. Cleaning Results

<table>
<thead>
<tr>
<th>DEVICE IDENTIFICATION</th>
<th>COUNTS PER UNIT</th>
<th>PERCENT REDUCTION (%)</th>
<th>LOG$_{10}$ REDUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$<1.0 \times 10^0$</td>
<td>>99.99980</td>
<td>>5.7</td>
</tr>
<tr>
<td>2</td>
<td>$<1.0 \times 10^0$</td>
<td>>99.99980</td>
<td>>5.7</td>
</tr>
<tr>
<td>3</td>
<td>$<1.0 \times 10^0$</td>
<td>>99.99980</td>
<td>>5.7</td>
</tr>
</tbody>
</table>

DBLSO Titer: 1.4×10^5 CFU/mL

Positive Control Titer: 5.1×10^5 CFU/device
All reports and letters issued by Nelson Laboratories, Inc. are for the exclusive use of the sponsor to whom they are addressed. Reports may not be reproduced except in their entirety. No quotations from reports or use of the corporate name is permitted except as expressly authorized by Nelson Laboratories, Inc. in writing. The significance of any data is subject to the adequacy and representative character of the samples tendered for testing. Nelson Laboratories, Inc. warrants that all tests are performed in accordance with established laboratory procedures and standards. Nelson Laboratories, Inc. makes no other warranties of any kind, express or implied. Nelson Laboratories, Inc. expressly states that it makes no representation or warranty regarding the adequacy of the samples tendered for testing for any specific use of application, that determination being the sole responsibility of the sponsor. Nelson Laboratories' liability for any loss or damage resulting from its actions or failure to act shall not exceed the cost of tests performed, and it shall not be liable for any incidental or consequential damages.